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1rrot)ational flow of two-dimensional jets from a channel is treated without 
direct use of a logarithmic hodograph plane. An analytical approach is introduced 
for solving the general problem of two jets issuing from a channel with three end 
plates. Numerical values of the contraction coefficient and the angle of jet de- 
flexion are obtained for the special case where the two jets are located symmetric- 
ally and all the end plates are in line. Limiting cases of the resulting single-jet 
problem are t,he symmetric and asymmetric configurations solved by von Mises. 
Results for the asymmetric case improve upon the theoretical values reported by 
von Mises, and compare favourably with existing experimental data. 

1. Introduction 
The efflux of a two-dimensional jet from a slot in a channel has been treated for 

various configurations by a number of investigators for over a century. Single-jet 
problems over plane and curved boundaries with or without gravity arise in 
numerous practical situations, as reported by Robertson (1965). The two-jet 
investigation included in the present paper was initiated because of interest in 
jet and cavity flows and jet configurations in fluid amplifiers and orifice-plate 
valves. The use of kite-difference and finite-element techniques in the last two 
decades has meant a lessening in the application and development of classical 
conformal-mapping techniques to potential-flow problems. Instead of the usual 
mapping of the logarithmic hodograph plane, the present paper introduces a 
technique that reduces the problem to the solution of a boundary-value problem 
in a rectangle. Although somewhat similar techniques have been employed by 
Thom & Apelt (1961), Cassidy (1965), Markland (1965) and Strekloff & Moayeri 
(1970), the current method can be readily extended to gravity-free flows past 
curved boundaries (Martin 1967). 

The asymmetric two-jet efflux problem shown in figure 1 is solved by applying 
the solution technique described below. Only a limited number of problems of 
two jets issuing from channels have been solved completely. Typically, the end 
plates BC and I J  are eliminated and the plate EG aligned normal to the flow 
(Birkhoff & Zarantonello 1957; Robertson 1965). The simpler single-jet problem 
with two end plates lined up was formulated in the last century by Micliell(1890). 
Further discussion of the problem without plate alignment can be found in 
Ciscotti (1908, 1914) and Greenhilll (1910). In none of these instances were the 
resulting elliptic integrals evaluated. Von Mises ( 1  91 7) treated special cases of 
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FIGURE 1. Definition sketch of physical plane. 

the more general single-jet problem discussed by Ciscotti, namely (if a single 
symmetric jet and (ii) an asymmetric jet with one end plate absent and the other 
end plate in line with the end of the opposite channel wall. 

As are most if not all conformal-mapping solution techniques for complex 
asymmetrical multiple-jet and multiple-plate free-streamline problems (Robert- 
son 1965; Birkhoff & Zarantonello 1957), the method presented here is an implicit 
or inverse one for which the exact location of the solid boundaries cannot be 
prescribed initially. This difficulty can be resolved by parametric studies of the 
relationships between quantities that can be prescribed and the resulting physical 
dimensions. If necessary, iterative numerical schemes may be employed. 

Although the solution is demonstrated to be valid for a general two-jet efflux, 
parametric curves are presented only for the case in which the two jets are sym- 
metric relative to each other and the end plates are in line. The limiting forms 
of this configuration are the two cases cited above that von Mises (1917) solved. 
Separate simple solutions are effected for the two limiting cases (i) to provide a 
check and comparison for the more general solution and (ii) to improve the 
accuracy of the values reported by von Mises for the asymmetric jet. 

2. Conformal transformation 
The general two-dimensional flow problem that we pose here is shown in the 

physical plane in figure 1. We assume steady irrotational flow of an incom- 
pressible fluid from the two openings, which are in general not lined up with the 
two lips BC and I J  or the middle plate EG. The special case in which all three 
plates are lined up and the two jets are symmetric can be further reduced to the 
two-lip symmetric and the single-lip asymmetric single-jet problems solved by 
von Mises. 

The boundary-value technique applied here has already been used for free- 
streamline flows with curved boundaries (Martin 1967). Basically, we use the fact 
that, through conformal transformations of analytic functions, any two of the 
various conjugate harmonic functions satisfy Laplace’s equation. The boundary- 
value problem can be posed, then, in any conformal plane in terms of any two 
conveniently selected analytic functions. 
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For the two-jet problem depicted in figure 1 the physical plane is defmed by 
z = x+iy. We let 4 be the velocity potential and @ be the stream function, for 
which the complex potential w = q5+i$, as shown in figure 2. We express the 
complex (conjugate) velocity potential 6 in the form 

where 6 is the angle of the velocity vector relative to the horizontal, u and v are 
the x and y components of the velocity vector V, and U is the jet velocity shown 
in figure 1. Even though the hodograph and logarithmic hodograph planes are 
not mapped in applying the technique described here the logarithmic hodograph 
variable L2 is crucial to the solution. The complex function 

L2 = In6 = ln(V/U)-i6 (2) 

is analytic if only the single-valued part of the In function is used. It follows then 
that 

and 
v26 = azqax2 + avpy2 = o (3a )  

Equations (3) actually constitute a boundary-value problem for 6 and In (V/U) 
in the z plane. Inasmuch as the location of the free streamlines is not known 
a priori, the problem is not simplified however. A s  the w plane is comprised of 
straight lines, a more suitable approach would be to solve 

a v / a p + a 2 s / a p  = o (4a) 

and 

For the w plane the boundary-value problem is more easily formulated in terms 
of 6 than in terms of In ( V/U). On all solid boundaries 6 is a constant, as shown in 

1-2 
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FIGURE 3. Boundary-value problem in rectangular w1 plane. 
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FIGURE 4. t plane. 

figure 1 for the lines AB, BC, EF,  F G ,  1J and A J .  The Cauchy-Riemann 
conditions relating S and In ( V / U )  in the w plane are 

88 a{ln ( V/U)> 88 8{ln ( V / U ) }  
( 5 %  b )  _ -  

a$ - a$ ’ @ = -  a$ * 

The boundary condition on the free streamlines in the absence of gravity is 
V = U or In ( V / U )  = 0, for which the normal gradient of S is zero in the z plane, 
i.e. 8/an = 0. This boundary condition transforms in the w plane to aS/a@ = 0 
upon application of (5a) .  The boundary-value problem shown in figure 2 is still 
somewhat ill posed as on the lines DEF and FGH both Dirichlet and Neumann 
boundary conditions are specified. This problem of a combination of an in- 
homogeneous Dirichlet boundary condition and a homogeneous Neumann 
boundary condition on the same straight line can be alleviated, however, by 
transforming the entire boundary-value problem in the w plane to a rectangle in 
another plane. 

The complex plane that comprises the rectangle is defined by 

w1 = $1 +@I. ( 6 )  

If w1 is an analytic function the boundary-value problem is a solution to 

and 
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For the transformed boundary-value problem shown in figure 3, we employ the 
Schwarz-Christoffel theorem to relate the w and w1 planes through an inter- 
mediate plane, the t plane. The t plane, shown in figure 4, has the points C, I 
and E fixed at  0, 1 and infinity respectively. All the remaining points except G 
can have assigned values. If the value t, of t a t  G is taken as l / k 2 ,  where k is the 
modulus of the Jacobian elliptic functions, the t plane can be mapped into the 
w1 plane (Byrd & Friedman 1954, p. 17) by 

w1 = K-1 sn-1 [t],, (8) 

where K is the elliptic integral of the first kind and sn is the sine-amplitude 
Jacobi function. The inverse relationship is 

t = sn2[Kwl, k]  = sn2[Kw,]. ( 9 )  

The ratio of the lengths of the sides of the rectangle, imaginary to real, is K’/K, 
where K‘ is the complementary integral of the first kind. For the w1 plane shown 
in figure 3, however, #11 = 1 and $l = K’/K on EFG. The location of each of the 
remaining six points in the t plane is determined by the relative positions of 
A ,  B,  D ,  F, H and J in the w1 plane. The relationships are 

where Hand  O are theta functions, which were employed because of their quick 
rate of convergence in the particular series expansions defined in the appendix. 

The w plane is related to the t plane by 

where B is the channel width and V, the approach velocity in the channel, as 
shown in figure 1 .  

The boundary conditions shown in figure 3 for 13 are no longer combined 
Dirichlet and Neumann conditions on the same straight line, as 6 is specified on 
the two real sides and its normal gradient is known on the other two sides. On 
the channel sides A B  and A J ,  6 = 0. The upward flow on the surfaces J1 and FE 
requires 6 = 471, while on BC and FG, S = - 4.. There exists, of course, a dis- 
continuity in 6 at the stagnation point F. On the free streamline surfaces CDE 
and CHI the transformed boundary condition In ( V / U )  = 0 yields aS/a$, = 0. 
The boundary-value problem delineated in figure 3 is well posed, allowing use 
of separation of variables and the theory of Fourier series. We first obtain 6 as 
a function of q51 and $1 from the solution to (7a) ,  and then apply the Cauchy- 
Riemann conditions to determine In ( V / U ) .  The complex solution for 52 in terms 
of 6 and In ( V / U )  is 

52 = R(wl) = In ( V / U )  -is. (12 )  
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From (1) and (2) the final physical-plane relationship is 

1 dw 
U dw, 

dZ = - C" - awl. 

The particular physical configuration is obtained from (13), in which s2 is 
obtained from the boundary-value solution and dwldw, from the conformal- 
mapping relationships (8) and (11). 

3. Boundary-value problem 
From separation of variables 

(al sinh A$., + u2 cosh (a3 sin + a4 cos A#,), h + 0, ( 14) 

In  the latter case the condition a6/a$, = 0 on G H I  yields b, = 0. The product 
blb4 must also vanish in order that In ( V / U )  = 0 on this line, resulting in b, = 0 
and 

= ( ( b  1 $ 1-t b 2) (b,$l+b,), A = 0. (15) 

S = A , ,  h = O ,  (16) 

or $1F = 1 - *($lB + 41.T). (19) 

The boundary condition &?/a$, = 0 on CDE and CHI  yields a3 = 0 and 
sinh$lI = 0, from which h = nm, n = 1,2 ,3 ,  ... . We express the solution in 
terms of Fourier series: 

m 

n=l  
6 = A ,  + C [A; sinh nqb1 + BA cosh nqh1] cos nqbl (20) 

or, more conveniently, 

m a0 

6 = A , +  C Ansinh[nn($lE-$l)]cosnn$l+ B,sinhnm$-,cosnn$,. (21) 
,=l n=l  

As a result of satisfying boundary conditions on CI and EG 

1 
n 

Ansinhnm$lE = 2 cosnn$,d$, = -- (sinnn$lB+sinnm$lJ) (22a) 

The solution for the harmonic conjugate In ( V / U )  is determined by inspection 
to be v -  m 

u n=l n = l  
In - = C A ,  coshnn($,, - $1) sin nn$l - C Bn cosh nm+l sin nn$l. (23) 

The logarithmic hodograph variable Q can be expressed in terms of elliptic 
functions as Jacobi's norne 

Q = exp [ - 7w/Wl ,  (24) 
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from which 
sinh [nn(K'/K)] = 4[q-" - p ] .  

In terms of q the solution for !2 is 

7T qn(sin nqblB + sin nn$,,) sin nn(wl - i$lE) 
n( 1 - q2") 

n = - - [ l - # l B - $ 4 1 J J i - 2  c 
2 n=l  

We use Jacobi's (1881) formula relating the incomplete elliptic integral of the 
third kind II, the Jacobian zeta function 2 and the theta function 0 : 

( 2 7 )  
@ ( 2 K ~ / n -  2KA/m) 
@(2Ku/n+2KA/n)'  

= &In 

The final solution for B is 

From (8) and (1 1) 

dw 2K 
dw, 7T t ,  - t, [sn2 (Kw,) - tA,][sn2(Kw1) - tD] [sn2(Kwl) - t H ]  ' 

( t A  - t D )  ( t H  - t A )  [sn2 (Kw,) - t F ]  sn (Kw,) cn (Kw,) dn (Kw,) -=-T?J? 

( 2 9 )  

We use the identities in the appendix relating the Jacobian elliptic functions in 
( 2 9 )  and the eta and theta functions, resulting in 

dw K - dw, = 2 - n kk' - t ,  - ( tH tA  - tA' &BF,(Kw,) F2(Kw1) F3(Kwl), (30)  

H2(Kw1) - t p  kO2(Kw1) 
Fl(KW1) = H2(Kw1) - t ,  k@2(KWl) ' where 

H(Kw1) H,(Kw,) 
F3(KW1)  = H2(Kw1) - tgkO'(K~1)' and 

The solution for z, from (13 ) ,  is 

(33 )  
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4. General solution 
A complete geometric description of the boundaries in figure 1 is given by five 

y dimensions and two x dimensions, resulting in six dimensionless length ratios, 
usually in terms of the channel width B. Correspondingly, for a given value of k2 

there are six arbitrary values oft, i.e. the positions of the associated points in the 
w1 plane. Point F is not completely arbitrary, however, as (19) must be satisfied. 

For given values of k2, dlA, &, &, +lD and + l H ,  we determine the shape of 
the physical plane by numerical integration of (34). The use of a rapidly con- 
verging Fourier series expansion of the eta and theta functions (Byrd & Friedman 
1954, p. 314) greatly expedites the calculation. These series expansions are 
provided in the appendix. An eighth-order integration rule (Abramowitz & 
Stegun 1964, p. 886) was employed for the numerical integration. The use of 
complex utility computer routines facilitated the resolution of the integrand 
of (34) into real and imaginary components. 

Special provisions were made in the integration near or around the singularities 
at  points B, F and J .  The right-angle stagnation points B and J yield infinite 
values in the integrand. It can be demonstrated, however, that, in the limit as 
B is approached from A or G, the integrand varies as A&*, where A$, is the 
distance away from B. Near point J an identical relationship exists. Equation (34) 
is integrated by tables outward from the singularity for a small distance, beyond 
which numerical integration is employed. The singularity a t  F results in an 
indeterminate value for the integrand. Numerical integration can be carried 
across this singularity, however, as the application of L’Hospital’s rule yields 
a finite value for the integrand at  F .  

Points A ,  D and H ,  which lie at infinity in the z plane, require careful considera- 
tion in the numerical integration. In  all three cases integration was carried out 
towards the singularity until uniform flow was approximately attained, at 
which location the velocity potential is a straight line. Imposing this criterion 
allowed calculation of the change in the x and y co-ordinates between points G 
and E ,  G and I ,  and B and J ,  the last of which provided a confirmation of the 
solution. 

We obtain the jet angles S, and S, from (2) and (28). At D 

S, = n(cjIF - 3) + Im [t In F4(iK$lD) +In &(iK$lD)]. (37) 

If b, and b2 are defined as the straight-line distances between C and E ,  and G and I ,  
respectively, it can be shown that the ratios of jet width to channel width are 

where Cc, and Cc2 are the corresponding coefficients of contraction. Equations (38) 
and (39) together satisfy continuity: 
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c 

The velocity ratio is evaluat'ed from (28) as 

V,/U =Re[exp(Q,)]. 

The contraction coefficients are computed from (38) and (39) once the distances 
b, and b, have been determined by integration of (34). A complete integration of 
(34) along all nine lines in the w,  plane yields the actual configuration in the z plane 
as well as b,  and b,, from which the contraction coefficients can be calculated. 

We obtained the pressure distribution on the end plates BC, EG and IJ  from 
(2), (28) and Bernoulli's equation. By independent evaluation of the total force 
on all three end plates from momentum analysis and from numerical integration 
of the pressure distribution, the solution was confirmed. 
An arbitrary selection of values of $,D, $lH, c,hlA, $lB and #1 for a given k2 will 

yield an asymmetric configuration, for which the end plates will in general not 
be lined up. The results of one particular selection of parameters is shown in 
figure 5.  For parametric studies of more general configurations than the sym- 
metric two-jet (asymmetric single-jet) problem reported in 3 5, relationships 
among the six quantities above must be established in order to investigate two 
asymmetric jets with all three plates in line. 

A two-jet problem with complete symmetry about F is possible only if 
$lD = $lH, = $lF = +, and c,hl = 1 - &. If these constraints are applied, 
end plates BC and I J  line up but the middle plate EG is not in general in the 
same plane as the other two. 

5. Asymmetric single jet 
The single-jet problem discussed by Cisotti (1908), Greenhill (1910) and 

Michell (1890) can be effected by imposing complete symmetry about F. For 
a given k2, only $ lB  and $lD can be chosen arbitrarily. The particular solution 
for which the two end plates are in line, as shown in figure 6, will be determined. 
Furthermore, values of the jet angle and coefficient of contraction are sought for 
particular values of the ratio b / B  of slot width to channel width. 
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A 

FIGURE 6. Definition sketch for single-jet configuration. 

cc sD 
blB = 0.1 

0.8984 0.643 15" 5' 
0.896 0.636 13'23' 
0.892 0.631 11" 44' 
0.886 0.626 10" 7' 
0.877 0.622 8'27' 
0.862 0.618 6'39' 
0.826 0.615 4" 25' 
0.600 0.6124 0'54' 

b/B = 0.4 

0.5988 0.682 17'44' 
0.595 0.671 15"48' 
0.588 0.662 13'59' 
0.579 0.654 12" 14' 
0.565 0.648 lO"31' 
0,542 0.643 8" 45' 
0.515 0.639 6'54' 
0.466 0.635 4" 46' 
0.369 0.6319 1'45' 

blB = 0.7 

0.297 0.736 14' 26' 
0.293 0.723 12" 35' 
0.283 0.712 10'44' 
0.270 0.704 8" 52' 
0.251 0.697 6'55' 
0.186 0.688 2" 13' 
0.171 0.6871 1'15' 

cc 
blB = 0.2 

0.7977 0.655 16'41' 
0.794 0.647 14'52' 
0.789 0.640 13" 10' 
0.781 0.634 11'31' 
0.770 0.629 9" 52' 
0.753 0.625 8" 10' 
0.725 0.621 6" 18' 
0.661 0.618 3" 58' 
0.629 0.6173 3" 13' 
0.578 0.6166 2" 17' 
0.463 0.6159 0'35' 

blB = 0.5 

0.486 0.674 13" 15' 
0.458 0.660 9" 41' 
0.401 0.650 5'50' 
0.360 0.647 3" 56' 
0.347 0.646 3'26' 
0.300 0.6449 1" 41' 
0.256 0.6445 0' 12' 

alB cc 8, 
blB = 0.3 

0.6992 0.672 18" 17' 
0.696 0.662 16'20' 
0.691 0.653 14" 31' 
0,683 0.646 12" 48' 
0.672 0.640 11" 7' 
0.657 0.635 9" 25' 
0.633 0.630 7" 39' 
0.593 0.627 5'41' 
0.508 0.6235 3" 5' 
0.467 0.6229 2" 11' 
0.406 0.6223 1" 1' 

b/B = 0.6 

0.3983 0.712 15'55' 
0.393 0.700 14" 1' 
0.384 0.690 13" 12' 
0.372 0.682 10" 23' 
0.354 0.676 8'32' 
0.328 0.670 6" 33' 
0.291 0.666 4" 17' 
0.235 0.6626 1" 34' 

b/B = 0.8 b/B = 0.9 

0.1981 0.767 12" 21' 0.0984 0.817 9" 0' 
0.193 0.754 10'31' 0.093 0.803 7" 9' 
0.183 0.743 8" 38' 0.084 0.792 5" 9' 
0.169 0,735 6" 39' 0.074 0.786 3"32' 
0.150 0.728 4" 29' 0.070 0.784 2" 53' 
0.123 0.723 2" 0' 0.052 0.7806 0" 12' 
0.114 0-7228 1" 13' 

TABLE 1. Calculated coefficient of contraction and deflexion angle 
for asymmetric single jet. 
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FIGURE 7. Deflexion angle for single jet. 
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FIGURE 8. Coefficient of contraction for single jet. 
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Symmetric slot (a = c)  Asymmetric slot (c = 0 )  

cc 

b/B vonMises 

0.0 0.611 
0.1 0.612 
0.2 0.616 
0.3 0.622 
0.4 0.633 
0.5 0.644 
0.6 0.662 
0.7 0.687 
0.8 0.722 
0.9 0.781 

Martin 

0.6110 
0,6122 
0.6158 
0.6221 
0.6314 
0.6444 
0.6621 
0.6867 
0.7223 
0.7806 

von Mises 

0.673 
0.676 
0.680 
0.686 
0.693 
0.702 
0.720 
0.740 
0.782 
0.842 

Martin 

0.6744 
0.6757 
0.6795 
0.6862 
0.6959 
0.7092 
0.7270 
0.7509 
0.7840 
0.8347 

von Mises 

21" 0' 
20" 55' 
20" 35' 
20" 5' 
19" 40' 
19" 0' 
18" 0' 
16" 30' 
14" 20' 
11" 5' 

Martin 
21" 8' 
21" 3' 
20" 50' 
20" 26' 
19" 51' 
19" 1' 
17" 54' 
16" 22' 
14" 10' 
10" 44' 

TABLE 2. Comparison of particular solutions of present study with those of von Mises. 

By specifying kz and Q f l B ,  values of for AxcE = 0 were obtained by inter- 
polating for $,,. The functional relationship between $,, and q51B was established 
under the condition Ax,, = 0. For this relationship corresponding values of b/B 
as a function of $lB were determined. Parabolic interpolation techniques were 
employed to define the functional relationships b/B us. $lB and US. $ lB .  For 
b/B = 0.1(0.1)0.9 values of$,, and were obtained by parabolic interpolation. 
Usually the integration of (34) resulted in AxcE = 0, with b/B as specified. If not, 
another cycle of interpolation and integration was performed. The total force on 
all three end plates calculated from an integration of the pressure distribution 
never differed by more than 0.05 % from that based upon momentum principles. 

The coefficient of contraction of the jet C, and the angle of deflexion S, are 
given in table 1.  The angle of the jet is negative for small values of k2 but becomes 
positive as k2 approaches unity. For a given value of b/B identical results were 
obtained for negative and positive jet deflexion angles if a/B and c/B were equal. 
Physically, the two symmetric jets wouId of course intersect for negative values 
of 8,. The implication of jet intersection and the question of simply connected 
regions will not be discussed in the paper. All values listed in table 1 correspond 
to positive values of S,, however. 

Figure 7 shows the dependence of 13, on a/B for various values of b/B. The 
two limiting cases are the von Mises symmetric single jet (8, = 0) and the von 
Mises asymmetric single jet for which c/B = 0. The latter solution is represented 
by the upper curve. The coefficient of contraction is depicted in figure 8 in terms 
of a/B and b/B also. In  this figure the upper curve represents the asymmetric jet 
and the lower curve the symmetric one. Separate solutions were obtained for the 
two limiting cases to provide confirmation of the more general solution, and to im- 
prove the accuracy of the original values reported by von Mises (1917) and later 
by Robertson (1965, p. 512). We list the results of these particular solutions along 
with the original values reported by von Mises in table 2. For the symmetric 
slot (b/B = 0-4) the value of C, has been reported by von Mises as 0.633, by Rouse 
(1946, p. 57) as 0.631 and by Robertson (1965) as 0.632. In  the case of the 
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a1B 
FIGURE 9. Comparison of theoretical and experimental deflexion angles. Measured points 

from Chowchuvech: a, b/B = 0.2; 0, b/B = 0.4; 0 ,  b/B = 0.6; 0,  b/B = 0.8. 
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alB 
FIGURE 10. Comparison of theoretical and experimental coefficients of contraction. Measured 

points from Chowchuvech: a, b/B = 0.2; 0, b/B = 0-4; 0,  b/B = 0.6; 0 ,  b/B = 0.8. 

asymmetric slot the variance is considerably greater for a number of values 
of b/B. 

6. Comparison with experiment 
For the asymmetric single-jet problem experimental results are available. 

Chowchuvech (1961) measured the deflexion angle and the coefficient of contrac- 
tion of a water jet discharging into the atmosphere through a rectangular channel 
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2.54 cm high and 10.16 cm long. By means of two end plates the horizontal 
dimension was reduced in order to vary a / B  over a range of values for blB = 0.2, 
0.4,0.6 and 0.8. The effect of gravity on the flow upstream and downstream of the 
orifice was minimized, if not eliminated, by maintaining quite high Froude 
numbers. 

A comparison of the measured jet deflexion angles with the theoretical ones is 
shown in figure 9. Good agreement is obtained primarily because the angle that 
the jet attains is basically influenced by momentum considerations, which are 
easily represented in this simple accelerated flow. On the other hand, the com- 
parison of the measured and theoretical coefficients of contraction shown in 
figure 10 is not nearly as favourable. In this instance the discrepancy may be 
caused by surface-tension effects for the initially rectangular jet. The measured 
values of C, are frequently greater than the theoretical ones, as was found by 
Weisbach (Birkhoff & Zarantonello 1957, p. 33), for a symmetric jet issuing 
from a rectangular slot. 
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Appendix 
The Jacobian elliptic functions are related to the theta functions as follows: 

If q is Jacobi's nome the four theta functions can be expanded in rapidly 
converging Fourier series (Byrd & Friedman 1954, p. 314): 

m 

n = l  
@(u) = 1 + 2  c ( - l ) n q n B C O S  (45) 

where u is a complex variable. 
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